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Recent advances in the development of agents that act specifically to inhibit hepatitis C virus (HCV) are set to
fundamentally change the way that patients will be treated. New directly acting anti-HCV agents such as pro-
tease and polymerase inhibitors will initially be added to standard of care with pegylated interferon-a and riba-
virin. However, future therapy is likely to constitute combinations of agents which act at distinct stages of viral
replication and have differing resistance profiles. While directly acting anti-HCV agents will undoubtedly improve
treatment outcomes, the introduction of combination therapy may not be without complications in some
patient groups. HIV-positive patients who are receiving antiretrovirals (ARVs) are relatively highly represented
among those with HCV infection, and are at high risk of drug–drug interactions (DDIs). As combination anti-
HCV treatment gradually evolves to resemble anti-HIV therapy, it is essential to consider the increased potential
for DDIs in patients receiving combination anti-HCV therapy, and particularly in HCV/HIV-co-infected individ-
uals. Therapeutic drug monitoring is likely to play a role in the clinical management of such interactions.
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Introduction
Treatment of hepatitis C virus (HCV) with antivirals aims to
achieve a sustained virological response (SVR), which equates
to undetectable HCV RNA levels 6 months after completion of
therapy. This is associated with reduced progression of liver
disease and reduced viral transmission. The standard of care
for patients requiring treatment for chronic HCV currently
involves a combination of pegylated interferon-a (PEG-IFN) and
ribavirin, with response rates and duration of treatment that
vary according to HCV genotype.1,2 Weight-based dosing of riba-
virin is associated with better treatment outcomes for certain
genotypes.3 Clinical studies have shown that combinations of
ribavirin and PEG-IFN can achieve an SVR in only 36%–46% of
patients with HCV genotype 1 monoinfection, when treated for
48 weeks.1,4

Due to the limited success rates of current treatment and the
well documented adverse event profiles of ribavirin and PEG-IFN,
there is evident need for novel, directly acting treatments.
Specifically targeted antiviral therapy for HCV (STAT-C) represents
a new treatment paradigm with improved patient outcomes.
There are several STAT-C agents at various stages of clinical
development, including protease inhibitors (PIs)5 – 8 and nucleo-
side/non-nucleoside polymerase inhibitors.9,10 Other agents
under investigation include novel analogues of ribavirin,11 modi-
fied interferons,12 cyclophilin B,13 a glucosidase inhibitors,14 oligo-
nucleotides15 and immune modulators.16

In patients co-infected with HIV/HCV, progression to cirrhosis,
end-stage liver disease and ultimately death is more rapid.17 HCV
viral loads may be higher in co-infected patients than those
with monoinfection,17 and treatment outcomes in terms of
SVR rates may be worse in co-infected patients, particularly
with genotype 1 HCV infection.18 No significant difference in effi-
cacy or safety has been reported in co-infected patients treated
with PEG-IFN-2a plus ribavirin or PEG-IFN-2b plus ribavirin.19

HCV-associated liver failure is increasing significantly as a
cause of death in HIV-positive patients in the post highly active
antiretroviral therapy (HAART) era in developed countries.20 It
therefore follows that significant changes in HCV therapy could
profoundly improve the treatment outcomes of this patient
group. However, the addition of combination therapies, which
include novel agents, for patients who are taking antiretroviral
(ARV) regimens is unlikely to be without complication; clinically
significant drug–drug interactions (DDIs) involving ARVs are
common, affecting 27% of 159 HIV-infected outpatients in a
UK study21 and 23%–26% of 220 HIV-infected outpatients in a
study in the Netherlands.22

The future of anti-HCV therapy
Every stage of the HCV life cycle potentially represents a target
for STAT-C agents,15 meaning that increasing numbers of novel
agents and novel classes of agents are likely to emerge, in

# The Author 2010. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
For Permissions, please e-mail: journals.permissions@oxfordjournals.org

J Antimicrob Chemother 2010; 65: 1079–1085
doi:10.1093/jac/dkq086 Advance publication 23 March 2010

1079

 at U
niversidade F

ederal de S
anta C

atarina on O
ctober 1, 2011

jac.oxfordjournals.org
D

ow
nloaded from

 

http://jac.oxfordjournals.org/


a manner similar to ARV therapy. Currently in Phase III trials, the
NS3/4A PIs telaprevir (VX-950)5,6 and boceprevir (SCH 503034)8

are likely to be the first STAT-C agents licensed. The development
of some of the furthest advanced nucleoside analogue NS5B
polymerase inhibitors has been halted due to toxicities;
however, R7128, a pro-drug of PSI-6130, is currently in Phase II
trials. Figure 1 illustrates the location in the HCV genome of
drug targets, including the NS3/4A serine protease and the
NS5B RNA-dependent RNA polymerase enzymes, which, being
essential for viral replication, are primary targets for anti-HCV
therapy.

Eventually, HCV treatment may involve a combination of
directly acting STAT-C agents, without the requirement for
PEG-IFN or ribavirin treatment. In a manner analogous to HIV
therapy, this is likely to comprise a combination of protease
and polymerase inhibitors,9 which can achieve suppression of
viral replication, and be suitably robust against emergence
of resistance. In the more immediate future however,
single STAT-C agents will be added to PEG-IFN and ribavirin
therapy, until there are sufficient effective STAT-C agents licen-
sed with which to afford effective combination therapy with a
suitable barrier to resistance. Several studies have confirmed
the pivotal role of ribavirin in successful HCV antiviral therapy,
despite having little intrinsic antiviral activity. For example, with
telaprevir and PEG-IFN, ribavirin was found to increase SVR
rates by preventing relapse and emergence of telaprevir
resistance.6

To draw another comparison with HIV therapy, it is almost
certain that the selection of several agents without overlapping
resistance patterns will be required for combination therapy,
which will increase both the complexity and risk for DDIs.

ARVs and current anti-HCV treatment:
potential for DDIs
As PEG-IFN and ribavirin are expected to remain a fundamen-
tal component of anti-HCV treatment in the near future, their
potential for interaction with ARVs remains important with the
advent of STAT-C agents.

Concomitant administration of abacavir with PEG-IFN and
ribavirin has been associated with an increased risk of non-
response to anti-HCV therapy,23 and an interaction between
abacavir and ribavirin has been suggested. As both drugs are
guanosine analogues and have some metabolic pathways in
common, an inhibitory competition for phosphorylation is the
likely mechanism.24

Combinations of zidovudine with ribavirin and PEG-IFN can
lead to increased risk of severe haematological toxicity, including
anaemia. The use of zidovudine has been identified as an inde-
pendent factor contributing to haematological adverse events
in patients undergoing ribavirin and PEG-IFN treatment; the com-
bination is not recommended.25

The use of didanosine alongside ribavirin is associated with
increased risk of mitochondrial toxicity, which may be attri-
buted to increased exposure to the active metabolite of did-
anosine, dideoxyadenosine 5′-triphosphate, when didanosine is
co-administered with ribavirin.26 – 28 Toxicity may be severe and
co-administration is not recommended. Mitochondrial toxicity
has also been observed with combinations of stavudine and
ribavirin. In vitro data have shown that ribavirin can inhibit phos-
phorylation of zidovudine and stavudine. The clinical significance
is not clear; however, close monitoring of HIV RNA with this
combination is recommended.
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Figure 1. Important targets for STAT-C therapy in the HCV genome. Derived from information in Pawlotsky et al.15 and Chevaliez and Pawlotsky.46
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In relation to HIV PIs, it has been reported that in HIV/HCV-
co-infected patients, serum bilirubin increases following initia-
tion of PEG-IFN and ribavirin were 1.9-fold higher in patients
taking an atazanavir-containing regimen.29 Hyperbilirubinaemia
is, however, a relatively common side effect of atazanavir treat-
ment, for which there are various risk factors irrespective of
anti-HCV treatment.30 Atazanavir inhibits UGT1A1, an enzyme
involved in bilirubin conjugation; it is important to note that
different genotypes of UGT1A1 (notably *6*6, *7*7 and *6*731)
have an impact on enzyme activity, and interindividual variability
in the frequency and severity of hyperbilirubinaemia has been
observed in patients treated with atazanavir.31

With HIV non-nucleoside reverse transcriptase inhibitors
(NNRTIs), if patients receive efavirenz alongside PEG-IFN, moni-
toring of CNS effects is important, as the incidence of depressive
symptoms in patients with HIV/HCV co-infection treated with IFN
is reportedly high.32

Currently, ARV treatment may be adjusted, as far as is practic-
able, to enable optimal administration of anti-HCV therapy,
without compromising ARV efficacy. This will become increasingly
complex to manage with the addition of new STAT-C agents.
Figure 2 summarizes known and potential DDIs between ARVs
and anti-HCV drugs in current use and the HCV PIs in late
stages of development.

Potential interactions between ARVs and
STAT-C agents
As illustrated in Figure 2, few data are currently available
to evaluate the potential for DDIs between ARVs and emer-
ging STAT-C agents. Most is known about telaprevir and bocepre-
vir, the HCV PIs which are furthest through the development
process.

Although they target serine rather than aspartate proteins,
HCV PIs have structural similarities with HIV PIs, and there is evi-
dence to suggest that they share a common route of metab-
olism.33 In human liver microsomes, the metabolism of
telaprevir and boceprevir was substantially inhibited in the pres-
ence of relatively low concentrations of ritonavir.33 In addition,
on co-dosing either telaprevir or boceprevir with ritonavir in
rats, the plasma exposure of both HCV agents was markedly
increased. These findings suggest that telaprevir and boceprevir
may be primarily or exclusively metabolized by CYP3A. This has
implications for co-administration of ARV therapy, as HIV PIs
such as lopinavir and darunavir inhibit CYP3A4, whereas the
NNRTIs efavirenz, nevirapine and etravirine induce metabolism
mediated by this enzyme. Although PIs are able to inhibit
CYP3A4, the observed effect may be predominantly due to
potent inhibitory action of ritonavir, which is commonly used
as a pharmacokinetic enhancer to boost levels of other PIs.

Such interactions, when more comprehensively understood,
may not be problematic if appropriately managed. For example,
ritonavir could be utilized to dually boost both an HIV PI and an
HCV PI. Both ritonavir and newer pharmacokinetic enhancers in
development such as GS 935034 could be used to reduce dosing
frequency, allowing telaprevir and boceprevir to be dosed less fre-
quently than 8 hourly and thus increasing the likelihood of adher-
ence.33 In addition, there are ongoing studies to develop follow-on

compounds of the clinical candidate. For example, systematic
structure–activity relationship studies of different regions of boce-
previr have shown improved potency and improved pharmacoki-
netics compared with boceprevir in model systems.35

As a result of structural similarities between some nucleoside
reverse transcriptase inhibitors (NRTIs) and HCV NS5B nucleoside
polymerase inhibitors, competition for clearance pathways
cannot be ruled out. For example, R7128 is a cytidine analogue,
structurally related to the HIV NRTI cytidine analogues lamivu-
dine and emtricitabine. Although there may be potential for
interaction, relevance to the clinical setting remains to be
elucidated.

The non-nucleoside polymerase inhibitor GS 9190 has little
potential for inhibition or induction of CYP450 enzymes and is
not transported by P-glycoprotein (P-gp) in vitro; therefore, inter-
actions via these mechanisms are unlikely.36

Overlapping toxicity profiles and adverse effects also need to
be considered when using STAT-C agents alongside ARV therapy.
For example, clinical studies have illustrated that anaemia is a
relatively common adverse effect experienced by patients receiv-
ing telaprevir5,6 or boceprevir37 therapy. The frequency of
anaemia was increased in treatment groups receiving telaprevir
alongside PEG-IFN and ribavirin, compared with groups receiving
PEG-IFN and ribavirin alone.5,6 This may have implications for
patients who are taking zidovudine as part of their ARV
regimen, as anaemia is a common adverse reaction with zidovu-
dine treatment. Concomitant use of telaprevir or boceprevir with
zidovudine could therefore increase the risk of anaemia, particu-
larly when used in combination with ribavirin, which is likely to be
the case. Use of ribavirin with zidovudine is currently not rec-
ommended by one of the manufacturers of ribavirin,38 due to
anaemia risk.

Phase II studies have shown an increased incidence of hyper-
bilirubinaemia in patients treated with the cyclophilin inhibitor
Debio 025 compared with controls.39 This may be due to the
inhibition of the multidrug resistance protein 2 (MRP2) trans-
porter by Debio 025,40 resulting in reduced elimination of
conjugated bilirubin. As various ARVs are themselves inhibitors
of or substrates for MRP2, interactions via this mechanism or
UGT1A1, as previously described, cannot be ruled out. It has
been suggested that haplotypes of certain genes, such as
UGT1A, may be useful predictors of PI-induced hyperbilirubinae-
mia.41 Genetic diagnostics may be an important application to
future HCV, as well as HIV therapies. Interestingly, in the
context of co-infection, Debio 025 has also shown inhibitory
activity against HIV-1 in vitro.42

Although some Phase II studies of STAT-C agents have
reported no significant changes in various laboratory parameters
and electrocardiogram readings,5,43 as these new drugs become
licensed and clinical experience of their use develops, it is poss-
ible that toxicities may emerge, as with ARVs. For example, lipo-
dystrophy with various ARVs,44 mitochondrial toxicity with
didanosine28 and, more recently, cardiovascular effects with
abacavir.45 It is not inconceivable that STAT-C agents in develop-
ment could have metabolic or mitochondrial toxicities in
common with some ARVs, and future regimens may need to
be adapted to minimize risk.

Table 1 lists STAT-C agents in Phase II or III trials and, where
data are available, their potential to interact with ARVs.
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Figure 2. A summary of known and anticipated DDIs between antiretrovirals and anti-HCV drugs in current use and the HCV protease inhibitors in
Phase III development.
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Table 1. STAT-C agents in Phase II or III clinical trials

Drug Class
Development

phase Potential for interaction with ARVs

Protease inhibitors
Telaprevir (Vertex/Tibotec) NS3/4A HCV protease inhibitor III evidence for CYP3A4 metabolism;33 levels may be increased by ritonavir-boosted ARV PIs,

and decreased by NNRTIs; data from Phase II trials show that anaemia was more
common in treatment groups than placebo;5,6 potential for increased effect if
administered with ZDV

VX-950

Boceprevir (Schering) NS3/4A HCV protease inhibitor III evidence for CYP3A4 metabolism;33 levels may be increased by ritonavir-boosted ARV PIs,
and decreased by NNRTIs; data from Phase II trials show that anaemia was more
common in treatment groups than placebo;37 potential for increased effect if
administered with ZDV

SCH 503034

TMC 435 (Tibotec/Medivir) NS3/4A HCV protease inhibitor II unknown

MK-7009 (Merck) NS3/4A HCV protease inhibitor II unknown, although Phase I data suggest renal elimination is minor; little potential for
interaction with NRTIs via this mechanism47

Polymerase inhibitors
GS 9190 (Gilead) non-nucleoside polymerase inhibitor III little potential for inhibition or induction of human CYP450 and lack of recognition by efflux

transporter proteins in vitro36

R7128 (Roche) nucleoside polymerase inhibitor II potential competition for elimination pathways with cytidine analogue NRTIs 3TC and FTC

IDX184 (Idenix) nucleoside polymerase inhibitor (liver
targeted pro-drug)

II unknown

PF-868554 (Pfizer) non-nucleoside polymerase inhibitor II unknown

VCH-759 (ViroChem/Vertex) non-nucleoside polymerase inhibitor II unknown

ANA598 (Anadys) non-nucleoside polymerase inhibitor II unknown

Others
Debio 025 cyclophilin inhibitor II hyperbilirubinaemia reported as one of most frequent adverse events in Phase II study,

possibly due to inhibition of MRP2 by Debio 025;39 potential for increased
hyperbilirubinaemia risk when co-administered with ATV or IDV

AZD2836/A-831 (Arrow
Therapeutics/AstraZeneca)

NS5A inhibitor II unknown

ITX5061 (iTherX) entry inhibitor II unknown

ZDV, zidovudine; 3TC, lamivudine; FTC, emtricitabine; MRP2, multidrug resistance protein 2; ATV, atazanavir; IDV, indinavir.
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Conclusions
As more data become available concerning the metabolism,
clearance, drug transporter interaction and toxicities of the
STAT-C agents in development, potential DDIs with ARVs may
be better anticipated. Many interactions are expected between
HIV PIs and NNRTIs, and HCV protease inhibitors. It is unlikely
that DDIs will preclude treatment of both conditions concur-
rently; but accurate characterization of these interactions, and
prompt recognition of potential dangers by clinicians is impor-
tant to ensure the safety and efficacy of treatment.

It is also important to note that although DDIs can be theor-
etically pre-empted and a basis formed for practical manage-
ment, therapeutic drug monitoring and assessment of
individual patient response are important in the management
of complicated regimens, particularly when they involve new
agents with relatively little experience in the clinical setting.
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