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Abstract

Hepatitis C virus (HCV) infection is frequently characterized
by evolution to chronicity and by a variable clinical course
of the disease. The clinical heterogeneities of HCV infection
and the imperfect predictability of the response to interferon
(IFN) have suggested the need to search for a genetic basis
of clinical features. This led to the discovery of genetic
polymorphisms playing a major role in the evolution of
infection, as well as on treatment response and adverse
effects. This review will cover recent reports on the subject,
focusing on the potential use of the new genetic markers in
the diagnostic algorithm for the stratification of patients for
personalized antiviral regimens.
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Introduction

Hepatitis C virus (HCV) is a global health problem, the esti-
mated prevalence of HCV infection is 2.5%, corresponding
to about 170,000,000 HCV-positive persons worldwide. Over
70% of acute infections progress to chronicity; an estimated
27% of cirrhosis and 25% of hepatocellular carcinomas
(HCCs) occur in HCV-infected subjects (1). The prevalence
of HCV infections differs between ethnic groups. While the
overall prevalence of HCV infection is similar in the United
States, Australia, Turkey, Spain, Italy, and Japan, the age-
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specific prevalence and genotype distribution are notably dif-
ferent (2). For example, in the United States the prevalence
of HCV infection is highest among persons 30–49 years of
age (3, 4), while in Mediterranean and Eastern countries, like
Japan and China, the age-specific prevalence of HCV infec-
tion increase steadily with age, reaching its peak in the sixth
decade of life (5, 6).

A marked difference also exists in genotype distribution
as well as in the modes of transmission and response to anti-
viral therapy: genotype 1 is widely present in North America
and in Europe, while genotype 2 is most frequent in Japan
and China. Genotype 4 is common in Egypt, whereas geno-
type 5 is found in Southern Africa and is rare elsewhere.
Genotype 6 is generally limited to southeast Asia (7–9).

On the whole, available evidence suggests that genotypes
do not substantially influence disease severity or progression
(8, 9), while they are involved in response to antiviral ther-
apy (8). Standard treatment for chronic HCV infection is
based on weekly pegylated interferon (PEG-IFN) doses in
association with daily doses of ribavirin (RBV): sustained
virological response (SVR) (i.e., maintained clearance of
serum HCV RNA 24 weeks after stopping therapy) occurs
in about 50% of patients infected with genotype 1 and in
80%–90% of those infected with genotype 2 or 3 (10).

However, there is still a considerable percentage of
patients, especially with genotype 1, that do not respond and
are at high risk of disease progression to liver cirrhosis and/
or HCC. In addition, a percentage of treated patients expe-
rience severe side effects that require dose adjustment or
treatment discontinuation. Altogether, these considerations
have led to investigate other possible co-factors in the
attempt to better identify potential sustained responders. Both
virus and host characteristics have been previously indicated
as relevant determinants of treatment outcome: besides viral
genotype, high baseline viral load (11), male gender (11),
elevated body mass index (BMI) (12), presence of metabolic
syndrome (12, 13) or cirrhosis (14), and menopause (15) are
all associated with lower response rate to antiviral therapy.
Recently, additional factors linked to the genetic background
of patients have been identified and studied in relation to
spontaneous or therapy-mediated HCV clearance, and to
adverse effects of antiviral treatment. We will focus our
review on polymorphisms of interleukin 28B (IL28B)
(16–22) and inosine triphosphatase (ITPA) genes (23), as
these are the genetic traits for which relevant and solid infor-
mation have been established to date.
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Interleukin 28B (IL28B) gene polymorphisms

IL28B and spontaneous HCV clearance

The search for a genetic basis for the heterogeneous clinical
features of HCV infection was recently approached through
the methodology of a genome-wide association study
(GWAS). GWAS allows unbiased sampling of variations in
the entire genome to assess the relationship between a dis-
ease and specific single nucleotide polymorphisms (SNPs)
that appear to be more frequent in affected persons compared
with controls. This approach consistently found in four inde-
pendent studies that SNPs located in the IL28B gene region
are closely related with the events occurring in HCV infec-
tion, i.e., spontaneous clearance, rate of progression to chron-
ic infection and sustained response to PEG-IFN/RBV
treatment in patients infected with HCV genotype 1 (Table 1).

It is estimated that only about one third of individuals are
able to clear HCV while the other progress to chronic infec-
tion (31). Factors considered relevant in viral clearance are
either those of viral origin (like HCV genotype, inoculum,
route, evolution into quasispecies) or those linked to the host
(mostly strength of adaptive immune response). However,
these factors recently lost some of their relevance (32, 33)
while genetic association, especially with polymorphisms in
the IL28B gene, gained extreme attention (19, 24).

Several studies employing GWAS and genetic mapping
have identified a number of SNPs that are in strong linkage
disequilibrium (i.e., non-random association), located within
or near the IL28B gene locus (Table 1). Thomas et al. (19)
were the first to study the association of SNP rs12979860
(g.12007005C)T) with spontaneous HCV clearance. They
found that individuals with the CC genotype have higher
probability of clearing HCV than those with TC or TT gen-
otype. These results were confirmed by Rauch et al. (20)
who performed a GWAS in subjects who had cleared the
virus either spontaneously or following PEG-IFNa/RBV
treatment. Tillman et al. (24) analyzed the relationship
between the likelihood of HCV clearance and the IL28B poly-
morphism in a single-source outbreak in a cohort of German
women infected with anti-D-contaminated immunoglobulin.
In a Spanish cohort, the rs12979860 CC genotype was asso-
ciated with spontaneous resolution of infection in both males
and in females (25).

IL28B and outcome of antiviral therapy

The same IL28B haplotypes associated with spontaneous
clearance of HCV were found to be linked to treatment
response. The patients from four large studies that evaluated
treatment of chronic HCV infection with PEG-IFNa and
RBV using a GWAS (Table 1). The first cohort of patients
studied was from the ideal study, a head-to-head comparison
of PEG-IFNa2a and PEG-IFNa2b for treatment of genotype
1 chronic hepatitis C (16). In this study, more than 500,000
SNPs were considered. Seven SNPs, all located within
the IFNl gene cluster, were found to be related to SVR, but
the association could be explained by a single SNP
(rs12979860).

Three other groups evaluated the genetic relationship with
SVR in a different epidemiological environment (Australia,
Japan and Germany). They found that other 2 SNPs,
rs8099917 (g.12011383T)G) and rs12980275 (g.12000-
001A)G) segregated with treatment response (17, 18, 20).
On the whole, these data indicate that the IL28B haplotype
is a strong determinant of sustained response to PEG-IFNa,
although there are significant differences in the overall per-
centage of SVR explained by the genotypes associated with
response. Indeed, this percentage ranges between 55% and
65% of the cohort examined (34): this indicates that other
factors still have relevance in determining SVR.

Two additional SNPs, highly associated with rs12979860,
were identified by sequencing the IL28B gene by Ge et al.
(16), that identified a non-synonymous variant within the
IL28B gene encoding a lysine to arginine substitution at posi-
tion 70 (g.12003324T)C, K70R; rs8103142) that may
potentially affect receptor binding and/or protein stability,
together with a C to G substitution (g.12003862C)G,
rs28416813) 37 base pairs upstream of the IL28B translation
initiation site. Suppiah et al. (18) also identified, in addition
to the K70R substitution, that the rs12980275 SNP is strong-
ly associated with non-response. A similar finding was
obtained by Rauch et al. (20). Due to the strong linkage
disequilibrium among all these SNPs, it is very difficult to
disclose the possible causal variant responsible for the asso-
ciation with response to treatment.

The relationship between the IL28B genotype and
response to antiviral treatment was evaluated also in the set-
ting of liver transplantation. The rs8099917 TT genotype in
recipient and donor tissues was found to be significantly
associated with the rate of response to treatment in patients
with recurrent HCV infection (35). Recently, Akuta et al.
(36) identified in a cohort of Japanese patients infected with
HCV genotype 1b, a relationship between genetic variation
near the IL28B gene and amino acid substitution in the core
region of HCV as predictors of SVR to a triple therapy of
telaprevir/PEG-IFN/RBV.

The possible impact of IL28B SNPs in coinfections and
other viral infections is the object of ongoing investigation.
In patients coinfected with HCV and human immunodefi-
ciency virus (HIV), the rate of response to treatment appears
to be influenced by the IL28B genotype (37–40). Whether
this relationship is limited to genotype 1-infected patients
(38), or can be extended to genotype non-1 carriers (39),
requires further investigation. Preliminary data indicate that
the CC allele may represent an additional predictor of
response to PEG-IFNa in chronic HBeAg-negative HBV
carriers with genotype D infection (41). In contrast, the
rs12979860 SNP does not appear to be associated with the
resolution of HBV infection (42), with chronic HBV infec-
tion (43) or with HIV infection/disease progression (42, 44).

Epidemiological and clinical correlates of different

IL28B SNPs

Ge et al. (16) were the first to identify the striking ethnic
difference in the frequency of the IL28B genotype (CC for
SNP rs12979860) associated with SVR. They showed a dis-
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tinct prevalence between individuals of Caucasian origin in
comparison with those of African-American descent. The
ethnic disparity in genotype prevalence parallels the known
differences in the rates of SVR, although the effect of IL28B
SNP on treatment response was maintained in all ethnic
groups. However, African ancestry remained an independent
predictor of non-response (22), which could suggest the
presence of other as yet unknown genetic determinants of
response to treatment.

The rs12979860 SNP is located just 4378 bases from
rs8099917, and is in strong linkage with the latter in Cau-
casians (16, 20), but not in African-Americans (16) who
infrequently show the rs8099917 risk allele (45). Therefore,
rs8099917 is not useful for explaining why Africans and
persons of African descent are at increased risk of viral per-
sistence and non-response to treatment. Conversely, the
rs12979860 TT allele, being more frequent in Blacks than in
Caucasians, is a potentially informative marker in popula-
tions of African descent. Of further interest is the very high
percentage of rs12979860 CC genotype in Asian subjects
(16) that may explain the increased SVR rate obtained in
those populations, even though clinical trials in Asian
patients have not always demonstrated high SVR rates.

The IL28B genotype has been related to several clinico-
virological features of HCV infection, even if some of these
associations need to be confirmed in larger cohorts and in
different ethnic groups. The rs12979860 CC genotype
appears to be associated with higher pretreatment HCV RNA
load (16, 21) and with higher alanine aminotransferase, but
lower g-glutamyltransferase (GGT) activities (25). The wild-
type HCV core residues 70 and 91 were detected more fre-
quently in patients with the rs8099917 TT genotype (35, 36,
46), which was also related with lower GGT (26, 46), the
absence of steatosis (26) and a higher degree of liver inflam-
mation and fibrosis (46). Another clinical correlation con-
cerns aspects of lipid metabolism in infected subjects: the
rs12979860 CC genotype was associated with higher con-
centrations of total cholesterol, apo-lipoprotein B, and low-
density lipoprotein (LDL) (47).

Although the initial data on the clinical relevance of
IL28B SNPs were obtained in patients with genotype 1 HCV
(16–18), more recently, the degree of association of the
IL28B haplotype and clinical features of infection have been
investigated in patients infected with different HCV geno-
types. An increased frequency of the rs12979860 CC geno-
type was reported in patients with HCV genotypes 2/3
compared to those with genotype 1 (21, 25, 27, 48), but this
relationship was not sufficient to explain the different rates
of SVR (21, 25). Concerning treatment outcome in HCV
genotypes 2/3, discordant data were reported, two studies in
Italian (28) and German (27) patients showing the associa-
tion of IL28B haplotype with SVR, and two cohorts from
Switzerland (20) and Austria (29) failing to confirm the asso-
ciation. A likely interpretation of these results is that since
genotypes 2 and 3 are more sensitive to treatment than
genotype 1, the impact of the IL28B alleles is less evident,
and therefore larger series of patients are required to detect
statistically significant associations in this setting (49).

A key factor for the understanding of the relationship
between IL28B genotype and therapeutic response is repre-
sented by the kinetics of viral load during treatment. A large
study of different ethnic groups showed that the rs12979860
CC genotype was associated with improved early viral kinet-
ics and a greater likelihood of rapid virological response
(RVR), which itself represents a strong predictor of treatment
outcome regardless of IL28B genotype. In addition, a
rs12979860 CC genotype was associated with a higher rate
of SVR, even in the absence of RVR (22). This observation
was confirmed by the detection of a sharper drop in HCV
RNA load during the first 24 h of treatment in Austrian car-
riers of the rs12979860 CC genotype (29). In the same study,
when RVR was considered in multivariate analysis of pre-
dictors for response, the IL28B genotype remained relevant
only in patients with HCV genotype 1 (29). In Japanese
patients with genotype 2, initial viral load and rs8099917 TT
genotype were independent predictors of SVR, and the
rs8099917 TT SNP was associated with a steep decline in
viral load by the 2nd week of treatment (30). Taken together,
these data suggest that despite a general relationship between
rs12979860 CC/rs8099917 TT genotypes and RVR, a com-
plex and as yet unclear interplay exists between host and
viral factors implicated in the clinical course and therapeutic
response of HCV infection.

In this respect, it has been hypothesized that the virolog-
ical correlates of IL28B genotype might reflect the different
SNP-related rates of spontaneous resolution (19, 48). The
increasing frequency of rs12979860 CC and rs8099917 TT
genotypes in uninfected healthy subjects (50%) compared to
patients with HCV genotypes 2/3 (45%) and genotype 1
(33%) (21, 28, 48) could be related to the stronger impact
of IL28B genotype on the clearance of HCV genotype 1 (20).
Even the puzzling relationship between the IL28B genotypes
associated with response and high baseline viremia (16, 21,
27) might result from more frequent resolution of the infec-
tion in patients with lower viral loads (48) who can eradicate
the infection even in absence of an adequate adaptive
immune response (50). The last observation might also offer
a clue for the understanding of the increased prevalence of
favorable genotypes in healthy seronegative individuals.

Biology and functional role of IFNl

The product of IL28B gene is IFNl3, an innate cytokine part
of the IFNl family, together with IFNl1 (encoded by IL29
gene) and IFNl2 (encoded by IL28A gene) (51, 52). In
humans the IFNl genes cluster on chromosome 19 (53).
IFNls are type 3 IFNs, structurally homologous to members
of the IL10 family, and are induced by viral infections like
type 1 IFNs (such as IFNa and IFNb). By analogy to type
1 IFNs, the signal transduction of IFNls is driven by the
Jak/STAT pathway and induces the expression of IFN-stim-
ulated genes (ISGs). However, IFNls exert their action
through a distinct receptor, a heterodimer consisting of the
interleukin 28 receptor a chain (IL28Ra) and the interleukin
10 receptor b chain (IL10Rb) (54). In contrast to IFNa and
IL10 receptors which are found on various cell types, the
IFNl receptor a chain (IFNlR1 or IL28Ra) is expressed
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Figure 1 Potential role(s) played by IL28B genotype in acute and chronic HCV infection.
Acute HCV infection (left panel) leads to activation of endogenous IFNa and IL28B production, that is also induced by the viral infection
itself and enhanced by IFNa. IL28B rs12979860 CC and rs8099917 TT genotypes (continuous line) lead to stronger IL28B induction or
enhanced cytokine function, thus increasing the production of IFN-stimulated genes (ISGs) and increasing the rate of spontaneous resolution.
In contrast, the IL28 rs12979860 TT and rs8099917 GG genotypes (dashed line) are characterized by weak IL28B induction, thus increasing
the rate of progression to chronicity.
In chronic HCV infection (right panel), low-level endogenous IFNa induces the expression of ISGs. Lower ISG induction is observed in
IL28B genotypes associated with response (continuous line). Treatment with IFNa increases ISG and IL28B induction. IL28B may further
enhance ISG induction, thus increasing the rate of sustained virological response (SVR). The IL28B genotypes associated with non-response
(dashed line) are characterized by strong ISG induction in basal conditions and with low ISG and IL28B induction during IFN treatment.
ISG and IFN response are further decreased by the activation of IFN inhibitory pathways linked to the basal pretreatment ISG expression.
This results in lower rates of response to IFN.

primarily by epithelial cells, liver tissue and peripheral blood
mononuclear cells (51, 52). IFNl displays additive antiviral
and anti-proliferative effects with IFNa, and contributes to
the virus-induced increase in the expression of IFN-stimu-
lated genes (ISGs) that activate the innate antiviral immune
responses. IFNl1 (IL29) has recently been used for the treat-
ment of HCV infection with promising results (55).

The biological basis for the relationship between IL28B
polymorphism and sensitivity of HCV to antiviral treatment
is not clear at present. Although the two main IL28B SNPs
in linkage disequilibrium (rs8099917 and rs12979860) were
the same in most of the studies, it is not clear how they exert
their influence. It has been postulated that both rs8099917
and rs12979860, being located upstream of the IL28B gene,
may influence the expression of IL28B. However, results are
controversial: no effect on IL28B transcription was observed
for rs12979860 (16, 56, 57), whereas lower IL28B mRNA
levels were detected in association with the rs8099917 GG
allele (17, 18, 35). It is worth noting that both rs8099917
GG and rs12979860 TT genotypes are related to increased

basal expression of ISGs in the liver of patients with chronic
HCV infection (56–58), and that high hepatic ISG levels
before treatment are associated with a lack of response to
IFN (59–61). This is supported by a recent report that iden-
tified ISG expression as the best predictor of treatment
response among multiple factors, including IL28B genotype
(62).

To synthesize the information available at this stage, a
model for the influence exerted by IL28B genotypes on the
clinical course of acute and chronic HCV infection can be
hypothesized (63–65), as depicted in Figure 1. In acute
infection, HCV triggers the synthesis of IFNa, which in turn
enhances IL28B production that has already been induced by
the virus itself. The rs12979860 CC and rs8099917 TT geno-
types can be associated with stronger IL28B induction (17,
18, 35) or with enhanced cytokine function, leading to
increased ISG expression and a higher frequency of spon-
taneous recovery. The opposite would happen in subjects
with rs12979860 TT and rs8099917 GG genotypes. On this
line, it has been shown that IL28Ra knockout mice (which
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are functionally similar to individuals with the latter geno-
types) have severely impaired antiviral response (66).

In chronic HCV infection, sustained HCV replication
induces continuous low-level expression of endogenous
IFNa and downstream activation of ISGs. rs12979860 CC
and rs8099917 TT IL28B genotypes, being associated with
low basal ISG levels (56–58), allow for stronger activation
of IL28B and ISG in individuals being treated with IFNa.
In contrast, the high basal ISG expression observed in sub-
jects with rs12979860 TT and rs8099917 GG genotypes
impairs further induction by treatment and leads to the acti-
vation of IFN inhibitory pathways (60), thus decreasing the
possibility of viral clearance.

IL28B genotyping in clinical practice

According to available data, IL28B genotyping is a good
candidate to become a powerful diagnostic tool for the iden-
tification of subjects more likely to respond to antiviral treat-
ments and for the personalization of HCV care. From this
perspective, a major issue is represented by the ethnic het-
erogeneity in IL28B genotypes and the consequent variable
rates of SVR to combination treatment, ranging from 53%
in African-Americans to 82% in Caucasians (16). At present,
available data indicate that the most informative target for
diagnostic tests is represented by rs12979860 (67), which is
the strongest predictor in subjects of African ancestry.

Although the predictive value of IL28B genotype in terms
of response rate is still insufficient to recommend its use as
the only marker for the selection of candidates for therapy,
the combination of IL28B SNPs and the other known pre-
dictors of outcome (HCV genotype, viral load, host charac-
teristics) already allows high accuracy in defining the
probability of achieving SVR, as well as the need for a tai-
lored dose and duration of treatment. Further studies should
be aimed at the optimization of the pre-treatment diagnostic
algorithm for the stratification of patients to personalized
antiviral regimens. A better knowledge of viral kinetics in
patients with different IL28B alleles will be useful to estab-
lish whether genotypes associated with clearance could
respond to shorter treatment courses, as already occurs for
HCV genotypes 2 and 3.

Finally, the relationship between IL28B SNPs and viral
kinetics might indicate a potential use of genotyping for the
selection of candidates and/or for the prediction of response
to new treatment regimens, including direct antivirals and/or
to IFNl itself. Although further studies are needed to gain
information on this issue, and especially for the definition of
the most accurate predictor of outcome between IL28B and
RVR, current evidence strongly supports the need of strati-
fication according to IL28B genotype at least before inclu-
sion in clinical trials.

Inosine triphosphatase (ITPA) gene

polymorphisms

Ribavirin (RBV), a synthetic guanosine analog, displays anti-
viral activity towards RNA and DNA viruses in vitro (68).

The effect exerted by RBV on HCV viral load in vivo is
minimal (69–71), but RBV and IFN show synergistic anti-
viral action both in vitro (72) and in vivo (73, 74). RBV
antiviral activity seems to result from a direct inhibition of
virus replication (75) and cellular GTP synthesis (68), as well
as from an effect on the host immune response, through the
modulation of the balance between Th1 and Th2 subsets
(76).

Anemia is a very common adverse effect of HCV com-
bination treatment, and is the result of RBV-induced hemol-
ysis and of IFN-related bone marrow toxicity. RBV-induced
hemolytic anemia (HA) is usually reversible and dose related
(73, 74), but may require significant dose reductions possibly
affecting efficacy, and is a cause of withdrawal from therapy
in 10%–14% of patients (77–81). The molecular mechanism
of RBV-induced HA has not been completely disclosed. Oxi-
dative damage and erythrocyte lysis have been related to the
intracellular accumulation of pharmacologically active phos-
phorylated RBV forms, such as ribavirin triphosphate (RBV-
TP) and to RBV-induced depletion of erythrocyte ATP
content (82).

Several factors are related to the risk of RBV-induced HA:
age (83, 84), female gender (83), dose (83) and plasma con-
centration (85) of RBV, baseline hemoglobin (84) and plate-
lets (86), and haptoglobin phenotype (86). However, even
after considering all the above predictive factors, the rele-
vance of RBV-induced HA varies greatly among individuals,
suggesting that the genetic background may exert a profound
influence on the clinical expression of this adverse effect.

In a recent GWAS, a strong association was shown
between hemoglobin reduction after 4 weeks of treatment
and SNP rs6051702 (g.3191924A)C) (23). The association
was explained by two known functional variants in the ITPA
gene, located on chromosome 20 and encoding for inosine
triphosphatase (ITPase). The two variants, a missense poly-
morphism in exon 2 (g.3141842C)A, P32T; rs1127354) and
a splice-altering SNP located in the second intron
(g.8838A)C, rs7270101), results in reduced enzyme activ-
ity: homozygosity for the P32T mutation leads to undetec-
table ITPase activity and accumulation of ITP in erythrocytes
(87–90). Both SNPs have already been described as func-
tional variants responsible for ITPase deficiency, a benign
inherited red cell enzymopathy (87, 91–93). This condition
is characterized by the accumulation of ITP, the substrate for
ITPase, in erythrocytes, and increased toxicity of purine ana-
logue drugs (94, 95). Conversely, reduced ITPase activity
may be protective from RBV-induced hemolysis through the
competition of ITP with RBV-TP (88, 96) and through ITPs
substitution of GTP in the generation of AMP, with a pro-
tective role against ATP depletion (97).

The results from Fellay et al. (23) have been replicated by
Thompson et al. (98), who also reported a strong association
between ITPase deficiency and lower frequency of RBV-
induced hemolysis over the complete 48-week therapeutic
course for genotype 1 HCV. However, even if RBV dose
reduction was seldom needed, the treatment outcome was not
affected by ITPA variants. Recent results by the same group
analyzed patients with HCV genotype 2/3, showing that
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ITPA variants are protective against treatment-related anemia,
but are not related to the rate of SVR (99). In Japanese, the
splicing variant-related SNP rs7270101 was not polymorphic
(100), but rs1127354 was associated strongly with the inci-
dence and severity of RBV-induced anemia, and marginally
with treatment outcome (100, 101).

ITPA genotyping in clinical practice

The ITPA genotypes appear to be strongly associated with
differential risk of RBV-induced HA and, consequently, of
RBV dose reduction. Thus, information on ITPA genotype,
or alternatively functional ITPAse assays, could play a role
in clinical decisions concerning the indication for treatment
in patients with co-morbidities, the frequency of hemoglobin
monitoring, and the need for dose adjustment. Further studies
are needed to assess the clinical use and the cost-effective-
ness of this approach, and to examine the potential role of
ITPAse activity on the increased risk of anemia induced by
new antivirals for HCV treatment that are used in combi-
nation with PEG-IFN and RBV (telaprevir, boceprevir)
(102). Finally, although ITPase deficiency is associated with
increased toxicity of some drugs (purine analogues), the ther-
apeutic modulation of ITPAse activity could represent a
promising strategy to prevent RBV-induced HA, improving
the compliance to RBV, and eventually the rate of response
to combined treatment for HCV infection.

Final statement

In conclusion, the genetic associations previously described
are becoming extremely relevant in the decision-making
process for patients with chronic hepatitis C. The presence
of rs12979860 CC genotype (detected in about 50% of Cau-
casian people) may have a substantial impact in deciding the
indication for treatment. While this is already being done for
genotype 1 patients, additional prospective studies are need-
ed to determine the predictive value of rs12979860 genotype
among other treatment-eligible patients (different ethnic
groups and HCV genotypes other than HCV-1). In contrast,
patients with TT or TC rs12979860 genotype may be
enrolled in prospective studies evaluating the association of
PEG IFN/RBV with protease and polymerase inhibitors to
increase the chance of response.

Regarding ITPA polymorphism, its determination can be
of great help not only during PEG IFN/RBV therapy, espe-
cially for patients at increased risk of anemia, but also in the
innovative triple therapies (PEG IFN/RBV/protease or
polymerase inhibitors) that are associated with a higher
incidence of anemia.
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