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a b s t r a c t

In this paper, a novel hybrid method named the LFDA_SVM, which integrates a new feature extraction
method and a classification algorithm, has been introduced for diagnosing hepatitis disease. The two inte-
grated methods are the local fisher discriminant analysis (LFDA) and the supporting vector machine
(SVM), respectively. In the proposed LFDA_SVM, the LFDA is employed as a feature extraction tool for
dimensionality reduction in order to further improve the diagnostic accuracy of the standard SVM algo-
rithm. The effectiveness of the LFDA_SVM has been rigorously evaluated against the hepatitis dataset, a
benchmark dataset, from UCI Machine Learning Database in terms of classification accuracy, sensitivity
and specificity respectively. In addition, the proposed LFDA_SVM has been compared with three existing
methods including the SVM based on principle component analysis (PCA_SVM), the SVM based on fisher
discriminant analysis (FDA_SVM) and the standard SVM in terms of their classification accuracy. Exper-
imental results have demonstrated that the LFDA_SVM greatly outperforms other three methods. The
best classification accuracy (96.77%) obtained by the LFDA_SVM is much higher than that of the com-
pared ones. Promisingly, the proposed LFDA_SVM might serve as a new candidate of powerful methods
for diagnosing hepatitis with excellent performance.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The liver is the heaviest organ in the body and is one of the larg-
est. The main functions of the liver are to process nutrients from
food, make bile, remove toxins from the body and build proteins.
It is easy to see how inflammation of the liver, or hepatitis, inter-
feres with these important functions and can lead to poor health.
Hepatitis is now one of the most important causes of chronic liver
disease in the world, and millions of people are at risk for its com-
plications. (http://hepatitis.about.com/od/overview/a/numbers.
htm, last accessed December 2009). People who have the liver dis-
ease can be characterized by four common symptoms: jaundice,
loss of appetite, fatigue and muscle and joint aches.

Expert systems and machine learning techniques are increas-
ingly introduced to help the medical diagnosis. With the help of
diagnostic systems, the possible errors experts made in the course
of diagnosis can be avoided, and the medical data can be examined
in shorter time and more detailed as well. Feature extraction as an
important component of a pattern recognition system has been
ll rights reserved.
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greatly used in medical diagnostic systems (Dogantekin, Dogante-
kin, & Avci, in press, 2009; Polat & Gunes, 2007a, 2007b, 2008). It
performs two tasks: transforming input parameter vector into a
feature vector and reducing its dimensionality. Two popular meth-
ods for feature extraction are fisher discriminant analysis (FDA)
and principal component analysis (PCA) (Duda, Hart, & Stork,
2001). Both of them extract features by projecting the original
parameter vectors into a new feature space through a linear trans-
formation matrix. PCA seeks to find the largest variations in the
original feature space, while FDA pursues the largest ratio of be-
tween-class variation and within-class variation when projecting
the original feature to a subspace. In all, a well-defined feature
extraction algorithm makes the classification process more effec-
tive and efficient.
1.1. Related work

Many feature extraction methods have been proposed to deal
with the automated diagnosis of hepatitis disease problem, and
most of them have achieved high classification accuracies. In Polat
and Gunes (2007a, 2007b), an artificial immune recognition system
(AIRS) based on principal component analysis (PCA) via 10-fold
cross-validation was used for classification, the reported accuracy
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was up to 94.12%. In Dogantekin et al. (2009), an adaptive network
based on fuzzy inference system combining with linear discrimi-
nant analysis (LDA-ANFIS) was applied for automatic hepatitis
diagnosis, and an accuracy of 94.16% was obtained. Ster and Dobni-
kar (1996) have obtained 86.4%, 85.3%, 83.2%, respectively, using
LDA (linear discriminant analysis), QDA (quadratic discriminant
analysis), Fisher discriminant analysis.

Aiming at improving the efficiency and effectiveness of the clas-
sification accuracy for hepatitis disease diagnosis, in this study, a
new feature extraction method, local fisher discriminant analysis
(LFDA) (Sugiyama, 2007) is examined. LFDA is an extension of con-
ventional fisher discriminant analysis (FDA), which localizes the
evaluation of the within-class scatter, and thus works well even
when within-class multimodality or outliers exist. In addition,
LFDA overcomes a critical limitation of the original FDA in dimen-
sionality reduction, namely the dimension of the FDA embedding
space should be less than the number of classes, while LFDA does
not suffer from this restriction in general. The objective of the pro-
posed method is to explore the performance of hepatitis diagnosis
using a two-stage hybrid modeling procedure in integrating LFDA
with SVM. SVM as a relatively new machine learning technique
was first introduced by Vapnik (1995, 1998). It has been proven
advantageous in handling classification tasks with excellent gener-
alization performance (Cortes & Vapnik, 1995; Joachims, Nedellec,
& Rouveirol, 1998; Osuna, Freund, & Girosi, 1997).

The rationale underlying the proposed method (LFDA_SVM) is
firstly to use LFDA in reducing the dimension of the hepatitis data-
set, and then the obtained reduced feature subset is served as the
input into the designed SVM classifier. The effectiveness of
LFDA_SVM is examined in terms of classification accuracies, sensi-
tivity and specificity. Moreover, the superior classification capabil-
ity of the proposed method can be observed by comparing the
results with those using SVM based on PCA (PCA_SVM), SVM based
on FDA (FDA_SVM) and the standard SVM. Experimental results
have shown that LFDA_SVM outperforms the other methods signif-
icantly and has achieved the best predicative classification accu-
racy with the reduced feature subset.
1.2. The organization of the paper

The remainder of this paper is organized as follows. Section 2
offers brief background knowledge on local fisher discriminant
analysis and supporting vector machines. The research design is
described in Section 3. Section 4 presents the experimental results
and discussion of the proposed method. Finally, Conclusions and
recommendations for future work are summarized in Section 5.
2. The theoretical backgrounds of the related methodologies

2.1. Fisher discriminant analysis

Fisher discriminant analysis (FDA) is a well-known linear tech-
nique for reducing dimensions and pattern classification. It seeks
to find the Fisher optimal discriminant vectors by maximizing
the scatter between the classes while minimizing the scatter with-
in each class (Duda et al., 2001).

Let xi 2 Rd (i = 1, 2, . . . , n) be d-dimensional samples and
yi e {1, 2, . . . , c} be associated class labels, where n is the number
of samples and c is the number of classes. Let nl be the number
of samples in class l :

Pc
l¼1nl ¼ n. Let zi 2 Rrð1 6 r 6 dÞ be low-

dimensional representations of xi, where r is the reduced dimen-
sion. In the cases of linear dimensionality reduction, using a d � r
transformation matrix T, the reduced sample zi can be given by
zi = TTxi, where AT denotes the transpose of the matrix A. Let S(w)
and S(b) be the within-class scatter matrix and the between-class
scatter matrix, respectively (Sugiyama, 2007):

SðwÞ ¼
Xc

l¼1

X
i:yi¼l

ðxi � llÞðxi � llÞ
T
; ð1Þ

SðbÞ ¼
Xc

l¼1

nlðll � lÞðll � lÞT ; ð2Þ

where
P

i:yi¼l denotes the summation over i such that yi = l, ll is the
mean of the samples in class l, and l is the mean of all samples:

ll ¼
1
nl

X
i:yi¼l

xi; ð3Þ

l ¼ 1
n

Xn

i¼1

xi ¼
1
n

Xc

l¼1

nlll: ð4Þ

Here, we assume that S(w) has full rank. The FDA transformation
matrix T(FDA) is defined as

TðFDAÞ ¼ arg max
T2Rd�r

trðTT SðbÞTðTT SðwÞTÞ�1Þ
h i

: ð5Þ

That is, FDA seeks a transformation matrix T such that the be-
tween-class scatter is maximized while the within-class scatter is
minimized. In the above formulation, the within-class scatter in
the embedding space, denoted as TT SðwÞT , is assumed to be invert-
ible. This implies that the above optimization is subject to

rankðTÞ ¼ r: ð6Þ

Let fukg
d
k¼1 be the generalized eigenvectors associated with the

generalized eigenvalues k1 P � � �P kd of the following generalized
eigenvalue problem:

SðbÞu ¼ kSðWÞu: ð7Þ

Then a solution T(FDA) of the above maximization problem is
analytically given by

TðFDAÞ ¼ ðu1ju2j � � � jurÞ: ð8Þ
2.2. Local fisher discriminant analysis

Local fisher discriminant analysis (LFDA) is a new linear super-
vised dimensionality reduction method proposed by Sugiyama
(2007). It can be considered to be a natural localized variant of fish-
er discriminant analysis, which seeks to maximize between-class
separability and preserves within-class local structure at the same
time. Since the LFDA evaluates the levels of the between-class scat-
ter and the within-class scatter in a local manner, it works well
even when within-class multimodality or outliers exist. LFDA
was shown to compare favorably with other supervised dimen-
sionality reduction methods through extensive experiments in
Sugiyama (2007).

Let S(lb) and S(lw) be the local between-class scatter matrix and
the local within-class scatter matrix, which are respectively de-
fined as (Sugiyama, Ide, Nakajima, & Sese, 2010):

SðlbÞ ¼ 1
2

Xn0

i;j¼1

W ðlbÞ
i;j ðxi � xjÞðxi � xjÞT ; ð9Þ

SðlwÞ ¼ 1
2

Xn0

i;j¼1

W ðlwÞ
i;j ðxi � xjÞðxi � xjÞT ; ð10Þ

where W(lb) and W(lw) are the n0 � n0 matrices with
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W ðlbÞ
i;j ¼

Ai;jð1=n0 � 1=n0yiÞ if yi ¼ yj;

1=n0 if yi – yj;

(
ð11Þ

W ðlwÞ
i;j ¼

Ai;j=n0yi if yi ¼ yj;

0 if yi – yj;

(
ð12Þ

where n0yi denotes the number of labeled samples in class
yi e {1, 2, . . . , c}. Ai,j is the affinity value between xi and xj based on
the local scaling heuristic(Zelnik-Manor & Perona, 2004), which is
defined as follow:

Ai;j ¼ exp �kxi � xjk2

rirj

 !
: ð13Þ

the parameter ri represents the local scaling around xi defined by

ri ¼ kxi � xðkÞi k: ð14Þ

where xðkÞi is the kth nearest neighbor of xi.
And the local scaling is computed in a classwise manner in or-

der to preserve the within-class local structure (Sugiyama, 2007).
According to the affinity Ai,j, the values for the sample pairs in same
class were weighted. The LFDA transformation matrix T(LFDA) is de-
fined as:

TðLFDAÞ � arg max
T2Rd�r

trðTT SðlbÞTðTT SðlwÞTÞ�1Þ
h i

: ð15Þ

In other words, LFDA seeks a transformation matrix T such that
the local between-class scatter in the embedding space, i.e. TTS(lb)T,
will be maximized, and the local within-class scatter in the embed-
ding space, i.e. TTS(lw)T, will be minimized. The solution of Eq. (13)
is equivalent to solving a generalized eigenvalue problem of S(b)

and S(w). When Ai,j = 1 for all sample pairs, S(lb) and S(lw) can be re-
duced to S(b) and S(w). Thus, LFDA can be regarded as a localized
variant of the FDA.

2.3. Support vector machines for classification

Support vector machine (SVM), originally developed by Boser,
Guyon, and Vapnik (1992), Vapnik (1995), is based on the Vap-
nik–Chervonenkis (VC) theory and structural risk minimization
(SRM) principle (Vapnik, 1995, 1998), which is known to have high
generalization performance. Another key feature of SVM is that
training SVM is equivalent to solving a linear constrained quadratic
programming problem. Thus it is unlikely to be trapped in the local
minimum (Cristianini & Shawe-Taylor, 2000). For more details, one
can refer to (Cristianini & Shawe-Taylor, 2000; Vapnik, 1995),
which give a complete description of the SVM theory. In this sec-
tion we will be concentrated on the basic SVM concepts for typical
binary-classification problems.

2.3.1. Linearly separable case – hard margin SVM
Let us consider a binary classification task:{xi, yi}, i = 1, . . . l,

yi e {�1, 1}, xi e Rd, where xi are data points and yi are correspond-
ing labels. They are separated with a hyper plane given by
wTx + b = 0, where w is a d-dimensional coefficient vector which
is normal to the hyper plane and b is the offset from the origin.

There will be many hyper planes that can separate the two clas-
ses, whereas the decision boundary should be as far away from the
data of both classes as possible. The support vector algorithm aims
to look for an optimal separating hyper plane that will maximize
the separating margin between the two classes of data since the
wider margin can achieve the better generalization ability. We
can define a canonical hyper plane (Vapnik, 1995) such that
H1 : wTx+ + b = 1 for the closet points on one side and
H2 : wTx� + b = �1 for the closest on the other. Now maximizing
the separating margin is equivalent to maximizing the distance be-
tween hyper plane H1 and H2. Hence we can get the maximal width
between them m ¼ ðxþ � x�Þ � w

kwk ¼ 2
kwk. To maximize the margin

the task is therefore:

Minimize gðwÞ ¼ 1
2
kwk2

; ð16Þ

Subject to : yiðwT xi þ bÞP 1: ð17Þ

By introducing Lagrangian multipliers ai(i = 1, 2, . . . , n) for the
constraint, the primal problem can be reduced to finding the sad-
dle point of Lagrange. Therefore, the dual Lagrangian becomes:

Maximize
Xn

i¼1

ai �
1
2

Xn

i¼1

Xn

j¼1

aiajyiyjx
T
i xj; ð18Þ

Subject to :
Xn

i¼1

aiyi ¼ 0; ai P 0: ð19Þ

Obviously, it is a quadratic optimization problem (QP) with lin-
ear constraints. From Karush Kuhn–Tucker (KKT) condition, we
know:

aiðyiðwT xi þ bÞ � 1Þ ¼ 0: ð20Þ

If ai > 0,the corresponding data points are called support vec-
tors. Hence the solution has the form:

w ¼
Xn

i¼1

aiyixi; ð21Þ

where n is the number of support vectors. Now we can get b from
yi(wTxi + b) � 1 = 0, where xi is support vector. After w and b are
determined, the linear discriminant function can be given by:

gðxÞ ¼ sgn
Xn

i¼1

aiyix
T
i xþ b

 !
: ð22Þ
2.3.2. Approximately linearly separable case – soft margin SVM
In practice, the data is always subject to noise or outliers, and

thus it is impossible to accurately classify two classes. In order to
extend the SVM to solve imperfect separation, positive slack vari-
ables ni, i = 1, . . . l (Cortes & Vapnik, 1995) are introduced to allow
misclassification of noisy data points, and a penalty value C is
introduced for the points that cross the boundaries to take into ac-
count the misclassification errors. In fact, parameter C can be
viewed as a way to control over-fitting.

Hence the new optimization problem can be reformulated as
follows:

Minimize gðw; nÞ ¼ 1
2
kwk2 þ C

Xn

i¼1

ni; ð23Þ

Subject to : yiðwT xi þ bÞP 1� ni; ni P 0: ð24Þ

Translate this problem into a Lagrangian dual problem

Maximize
Xn

i¼1

ai �
1
2

Xn

i¼1

Xn

j¼1

aiajyiyjx
T
i xj; ð25Þ

Subject to : 0 6 ai 6 C;
Xn

i¼1

aiyi ¼ 0: ð26Þ

The solution to this minimizations problem is identical to the
separable case except for the upper bound C on the Lagrange mul-
tipliers ai.

2.3.3. Non-linearly separable case – kernel trick
In most cases, the two classes cannot be linearly separated. In

order to make the linear learning machine work well in non-linear
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cases, a general idea is introduced. That is, the original input space
can be mapped into some higher-dimensional feature space where
the training set is linearly separable. The mapping is based on the
kernel function. In general, any positive semi-definite functions
that satisfy the Mercer’s condition can be as kernel functions
(Scholkopf & Smola, 2002). Some most widely used kernels are
listed here:
Ta
Th
Linear kernel
ble 1
e details of the 19 attributes of hepatitis da

Label Attribute

1 Age
2 Sex
3 Steroid
4 Antivirals
5 Fatigue
6 Malaise
7 Anorexia
8 Liver Big
9 Liver Firm

10 Spleen Palpable
11 Spiders
12 Ascites
13 Varices
14 Bilirubin
15 Alk Phosphate
16 Sgot
17 Albumin
18 Protime
19 Histology
Kðxi;xjÞ ¼ xT
i xj
Polynomial kernel
 Kðxi;xjÞ ¼ ðr þ cxT
i xjÞp
Gaussian kernel
 Kðxi;xjÞ ¼ expð�ckxi � xjk2Þ

Sigmoid kernel
 Kðxi;xjÞ ¼ tanhðr þ cxT

i xjÞ
where r, p and c are kernel parameters. Hence, now the decision
function takes the form of:

gðxÞ ¼ sgn
Xn

i¼1

aiyiKðxi;xÞ þ b

 !
: ð27Þ
3. Dataset and methods

3.1. Data collection

In this section, we have performed our experiments on the hep-
atitis database taken from UCI machine learning repository (http://
archive.ics.uci.edu/ml/datasets/Hepatitis). The purpose of the data-
set is to predict the presence or absence of hepatitis given the re-
sults of various medical tests carried out on a patient. The
dataset contains 155 samples, of which 32 cases belong to ‘‘die’’
class and the remaining 123 cases belong to ‘‘live’’ class. Each sam-
ple in the dataset has 19 attributes besides the label. The whole 19
attributes are listed in Table 1, in which 13 attributes with binary
values and 6 attributes with 6 to 9 discrete values.

3.2. The rationale of the LFDA_SVM

The rationale of LFDA_SVM which combines the feature extrac-
tion and parameter optimization is shown in Fig. 1. The feature
extraction is done by local fisher discriminant analysis (LFDA),
and the parameter optimization is performed by a grid search
method using 10-fold cross-validation. All input variables are nor-
malized before applying the feature extraction method. The main
purpose of normalization is to avoid attributes in greater numeri-
cal ranges dominating those in smaller numerical ranges. Addition-
ta.

Domain

10, 20, 30, 40, 50, 60, 70, 80
Male, Female
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
No, Yes
0.39, 0.80, 1.20, 2.00, 3.00, 4.00
33, 80, 120, 160, 200, 250
13, 100, 200, 300, 400, 500
2.1, 3.0, 3.8, 4.5, 5.0, 6.0
10, 20, 30, 40, 50, 60, 70, 80, 90
No, Yes
ally, the normalization could avoid numerical difficulties during
the calculation (Hsu, Chang, & Lin, 2003). Usually, the data could
be normalized by scaling them into the interval of [0, 1] according
to the Eq. (31), in which x is the original value, x0 is the scaled value,
maxa is the maximum value of feature a, and mina is the minimum
value of feature a. After the data is normalized, LFDA is performed
to reduce the dimensionality. In the second phase, the reduced
dataset is divided into three training–testing partitions, namely
80–20%, 70–30% and 50–50% respectively, via the stratified sam-
pling method. In the third phase, a grid search using 10-fold
cross-validation is carried out on each training set to find the opti-
mal parameter pair (C, c), where C is a penalty parameter, and c is
the kernel width of RBF kernel. In the fourth phase, the classifier is
trained on each training subset with the obtained optimal param-
eter pair (C, c) to get a predictor model. In the last phase, the ob-
tained predictor model is used to predict the instances in each
testing set.

x0 ¼ x�mina

maxa �mina
: ð28Þ
3.2.1. Feature extraction
When using SVM, one should bear in mind that the choice of

optimal input feature subset and the optimal parameters play a
crucial role for building a predictor model with high prediction
accuracy and stability, and both of them are important because
the feature subset choice will influence the appropriate kernel
parameters and vice versa (Frohlich, Chapelle, & Scholkopf,
2003). Like feature selection, feature extraction is an alternative
method of dimensionality reduction, which seeks to find one re-
duced representation set of features containing the most relevant
information of the original data through transforming the input
data into the set of reduced features. From the medical point of
view, this aims at identifying the most relevant information influ-
encing the treatment of patients (patient or normal). Thus, it plays
an important role in building the classifier systems. In this study,
local fisher discriminant analysis (LFDA), one new feature extrac-
tion method, is investigated for the hepatitis dataset. After normal-
izing the data into the interval [0, 1] according to the Eq. (31), LFDA
is executed to eliminate the irrelevant or useless features. The
algorithm of LFDA is implemented in Matlab (Sugiyama, 2007),
and the feature number of hepatitis dataset is reduced from 19
to 2. The scatter plot of the reduced two new feature subset is gi-
ven in Fig. 2.

3.2.2. Model parameters setting
In addition to the feature extraction, proper model parameters

setting can improve the SVM classification accuracy. Values of
parameters in SVM have to be carefully chosen in advance. These
parameters include the followings: (1) regularization parameter
C, which determines the tradeoff cost between minimizing the
training error and the complexity of the model; (2) parameter
gamma (c or d) of the kernel function which defines the non-linear
mapping from the input space to some high-dimensional feature
space; (3) a kernel function used in SVM, which constructs a
non-linear decision hyperplane in an input space. The sigmoid ker-
nel behaves like the RBF for certain parameters. However, it is not
valid under some parameters (Vapnik, 1998). The polynomial ker-
nel has more hyperparameters to adjust than the RBF kernel, and
takes a longer time in the training stage of SVM. Moreover, it
may go to infinity or zero while the degree is large. Thus, this
investigation only considers the Gaussian kernel, and a grid-search
technique (Hsu et al., 2003) is employed using 10-fold cross-vali-
dation to find out the optimal parameter values of RBF kernel func-
tion. Because the computational time to find the optimal
parameter values by the grid-search is not much more than those

http://archive.ics.uci.edu/ml/datasets/Hepatitis
http://archive.ics.uci.edu/ml/datasets/Hepatitis


Fig. 1. The rationale of the LFDA_SVM method in terms of block diagram.
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by advanced methods since there are only two parameters to be
considered. Furthermore, the grid-search can be easily parallelized
because each pair (C, c) is independent (Hsu et al., 2003).

In order to ensure the same class distribution in the subset, the
data set is randomly partitioned into three training–testing parti-
tions (80–20%, 70–30% and 50–50% respectively) via a stratified
sampling in which the sample proportion in each data subset is
the same as that in the population. The detail of the division is rep-
resented in Table 2. Before building the Classifier, datasets are
scaled. With training and testing data together, we scale each fea-
ture to the interval of [0, 1] according to the Eq. (31). Then we per-
form the 10-fold cross-validation on the 80%, 70% and 50% training
set to choose the proper parameters of C = {2�5, 2�3, . . . , 215} and
c = {2�15, 2�13, . . . , 21}, respectively. There will be 11 � 10 = 110
parameter combinations of (C, c) are tried and the one with the
best cross-validation accuracy is chosen as the parameter values
of the RBF kernel. Then the best parameter pair (C, c) is used to cre-
ate the model for training. After obtain the predictor model, we
conduct the prediction on each testing set accordingly.
3.2.3. Measure for performance evaluation
In order to evaluate the prediction performance of LFDA_SVM

classifier, we define and compute the classification accuracy, sensi-
tivity, specificity and confusion matrix respectively. The formula-
tions are as follows:

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

� 100%; ð29Þ

Sensitivity ¼ TP
TP þ FN

� 100%; ð30Þ

Specificity ¼ TN
FP þ TN

� 100%: ð31Þ

In Eq. (29)–(31), TP is the number of true positives; FN is the num-
ber of false negatives; TN is the number of true negatives; and FP is
the number of false positives. They are defined as a confusion ma-
trix in Table 3.



Fig. 2. The scatter plot of the reduced feature subset (where two ellipses
corresponding to the two dimensions of the reduced subset defined by the mean
vector and the covariance matrix).

Table 2
Training set and testing set.

Training–testing partition (%) No. of records in the subset

Training set Testing set

50–50 78 77
70–30 109 46
80–20 124 31

Table 3
Confusion matrix.

Predicted positive Predicted negative

Actual positive TP FN
Actual negative FP TN

Table 4
Classification accuracies for different testing sets.

Classification accuracy (%)

50–50% training–
testing

70–30% training–
testing

80–20% training–
testing

92.21 95.65 96.77

Table 5
The best parameter pairs (C, c) and number of SVs of each subset.

Partition (%) C c Number of SVs

50–50 2 2�1 30
70–30 25 2�1 39
80–20 2�1 2 43

Table 6
Sensitivity, specificity for each subset.

Metrics 50–50% training–
testing partition

70–30% training–
testing partition

80–20% training–
testing partition

Sensitivity
(%)

98.36 97.22 100

Specificity
(%)

81.25 80 85.71
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4. Experimental results and discussions

4.1. Experimental results

To evaluate the effectiveness of the proposed method, we con-
duct experiments on the hepatitis database. The classification
accuracy on the testing data for the reduced feature subset is
shown in Table 4. As we can see from Table 4, the highest classifi-
cation accuracy, namely, 96.77% has been achieved for the 80–20%
training–testing partition. The best parameter pairs (C, c) and the
numbers of support vectors (SVs) of each training–testing partition
are presented in Table 5.

In addition, we present values of sensitivity and specificity for
each partition in Table 6.

Classification results are displayed using a confusion matrix in
Table 7. As we can see from Table 7, the number of false positives
and false negatives decrease with the increase of the training set
size. Especially, there are no false negative for 80–20% training–
testing partition.

For comparison purposes, Table 8 gives the classification accu-
racies of our method and previous methods.

As shown in Table 8, the LFDA_SVM diagnosis system has
obtained the highest classification accuracy, 96.77%, reported so
far.

4.2. Comparative study

In this experiment, we attempt to compare the proposed system
with that of principle component analysis (PCA) based SVM, fisher
discriminant analysis (FDA) based SVM and standard SVM. The
whole hepatitis data is normalized to the interval [0, 1] according
to Eq. (31). After the normalization of the data, PCA is used to re-
duce the dimensionality, and the first 7, 8, 9 and 10 principle com-
ponents (PCs) are extracted from the original 19 features,
respectively. As shown in Fig. 3, these numbers of PCs account
for more than 76% information of the data, and all the four reduced
feature subsets are adopted as the inputs to the SVM Classifier. The
classification results of using the first 7–10 PCs of normalized data
in SVM is presented in Table 9. The classification accuracies are
found to be 87.12–93.55%. Among them, the one using nine PCs
performs slightly better than the others; the highest classification
accuracy of 93.55% is achieved on the 80–20% of training–testing
partition. Meanwhile, 19 features are reduced to one through
FDA, and then the subset with one feature is used as the input to
the SVM model. The classification result of FDA_SVM is presented
in Table 10, the classification accuracy is among 90.91% until
93.55%, which shows a slightly superiority over the results of
PCA_SVM. In addition, the numbers of support vectors (SVs) are
much lower than those produced by PCA_SVM. The result of the
standard SVM using the original features is shown in Table 11,
and the classification accuracy of this process is among 84.42% un-
til 87.10%. The relatively bad performance of this classification is
due to the existence of irrelevant and useless features, which leads
to decreasing the performance of the classifier. Moreover, the num-
bers of SVs produced by this method are relatively higher than
those of the other three methods. Among them, the LFDA_SVM
has gained the fewest numbers of SVs. It indicates the proposed
method has the best generalization ability as compared with the
other three methods, since the number of support vectors is pro-
portional to the generalization error of the SVM classifier (Vapnik,
1995). Both PCA and FDA are implemented with Matlab, and the
SVM model is developed by using a simple Matlab interface to LIB-
SVM (Chang & Lin, 2001). The detail comparison of the four meth-
ods is shown in Fig. 4.



Table 7
Confusion matrixes for each subset.

Actual Predicted Partitions

Normal Patient

Normal 60 1 50–50% training–testing partition
Patient 3 13
Normal 35 1 70–30% training–testing partition
Patient 2 8
Normal 24 0 80–20% training–testing partition
Patient 1 6

Table 8
Classification accuracies obtained with our method and other methods.

Author Method Classification accuracy
(%)

Ozyildirim, Yildirim,
et al.

MLP 74.37

Ozyildirim, Yildirim,
et al.

RBF 83.75

Ozyildirim, Yildirim,
et al.

GRNN 80.0

Adamczak FSM with rotations 89.7
Adamczak FSM without rotations 88.5
Adamczak RBF (ToolDiag) 79
Adamczak MLP + BP (ToolDiag) 77.4
Stern and Dobnikar LDA 86.4
Stern and Dobnikar Naive Bayes and Semi-

NB
86.3

Stern and Dobnikar QDA 85.8
Stern and Dobnikar 1-NN 85.3
Stern and Dobnikar ASR 85
Stern and Dobnikar Fisher discriminant

analysis
84.5

Stern and Dobnikar LVQ 83.2
Stern and Dobnikar CART (decision tree) 82.7
Stern and Dobnikar ASI 82.0
Stern and Dobnikar LFC 81.9
Stern and Dobnikar MLP with BP 82.1
Grudzinski Weighted 9-NN 92.9
Grudzinski 18-NN, stand. Manhattan 90.2
Grudzinski 15-NN, stand. Euclidean 89.0
Jankowski IncNet 86.0
Bascil and Temurtas MLNN (MLP) + LM 91.87
Polat and Gunes FS-AIRS with fuzzy res 92.59
Polat and Gunes PCA-AIRS 94.12
Dogantekin, Avci, et al. LDA-ANFIS 94.16
This Study LFDA_SVM 96.77

Fig. 3. The principal component of the hepatitis data and its according variance.

Table 9
Classification results with different number of principle components with SVM
(PCA_SVM).

Number of PCs Partition (%) Classification accuracy (%) Number of SVs

7 50–50 87.01 45
70–30 86.96 48
80–20 90.32 52

8 50–50 89.61 37
70–30 89.13 40
80–20 90.32 45

9 50–50 87.01 42
70–30 91.30 40
80–20 93.55 48

10 50–50 87.01 40
70–30 86.96 44
80–20 90.32 50

Table 10
Classification results of fisher discriminant analysis with SVM (FDA_SVM).

Partition (%) Classification accuracy (%) Number of SVs

50–50 90.91 28
70–30 93.48 36
80–20 93.55 44

Table 11
Classification results of the standard SVM algorithm using original features.

Partition (%) Classification accuracy (%) Number of SVs

50–50 84.42 48
70–30 86.96 52
80–20 87.10 64

Fig. 4. The classification accuracies of different methods on different training–
testing partitions.
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(The horizontal axis is each partition; the vertical axis is classi-
fication accuracy of each method, where PCA_SVM(1),
PCA_SVM(2), PCA_SVM(3) and PCA_SVM(4) represent PCA using
7, 8, 9 and 10 principle component combined with SVM,
respectively).

As can be seen from Fig. 4, the feature extraction using LFDA
shows the best performance among them, because LFDA seeks to
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localize the evaluation of the within-class scatter, and thus works
well even when within-class multimodality or outliers exist in the
data set. In addition, LFDA does not suffer from the restriction of
the original FDA in dimensionality reduction, namely the dimen-
sion of the FDA embedding space should be less than the number
of classes. And the performance of FDA_SVM is slightly superior
to that of PCA_SVM, it can be attributed to the characterization
of the hepatitis data. When the whole data is projected into one
dimension, most of them can be separately much more easily,
compared with the uncorrelated components in some higher sub-
space extracted by PCA. Since the entire features without feature
extraction were used to train SVM, the solely SVM approach per-
formed relatively poorly in comparison with the other three meth-
ods. Obviously, from above comparative empirical study, we can
see clearly that LFDA is a much more appropriate dimensionality
reduction tool for hepatitis diagnosis problem compared with the
other two feature extraction methods. Consequently, it make us
be more convinced that the proposed diagnostic system can be
very helpful in assisting the physicians to make the accurate diag-
nosis on the patients and will show great potential in the area of
clinical hepatitis disease diagnosis.

5. Conclusion and future work

In this work, we have developed a new medical diagnostic
method, LFDA_SVM, for addressing hepatitis diagnosis problem.
Experiments on different portions of the hepatitis dataset demon-
strated that the proposed method performed significantly well in
distinguishing the live liver from the dead one. It was observed
that LFDA_SVM achieved the best classification accuracies
(96.77% for 80–20% training–testing partition) for a reduced fea-
ture subset that contained two features. Meanwhile, comparative
study was conducted on the methods of the PCA_SVM, the
FDA_SVM and the SVM. The experimental results showed that
the LFDA_SVM performed advantageously over the other three
methods in terms of the classification accuracy.

We believe the promising results demonstrated by the
LFDA_SVM can ensure that the physicians make very accurate
diagnostic decision. Future investigation will pay much attention
to evaluate the proposed LFDA_SVM in other medical diagnosis
problems. In addition, since the performance of SVM greatly de-
pends on the model parameters, developing a more efficient ap-
proach to identify the optimal model parameters should also be
examined in our future work.
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